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Abstract: Finding an optimal plan (solution) to a planning problem can be a task unsolv-
able in a reasonable time. So it is important to efficiently comb the state-space
of the problem. One viable option is the 𝐴* planner the efficiency of which is
heavily reliant on the heuristic function used, it should both give good informa-
tion and be admissible. This work is focused on the finding of these heuristics.
This is achieved by training a neural network to output a series of numbers to
be used as convex weights for already existing admissible planning heuristics.
The heuristic created as a convex combination of admissible heuristics is also
an admissible heuristic, and when used with the 𝐴* planner an optimal solu-
tion is guaranteed to be found. The heuristic is focused on lowering the number
of expanded states by the 𝐴* planner, and therefore lowering the overall time
of plan finding. This work discusses the advantages and disadvantages of this
approach as well as the fundamental limit on performance.
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Abstrakt: Nalezení optimálního řešení plánovacího problému může trvat neúměrně
dlouho. Z tohoto důvodu je potřeba prohledávat stavový prostor problému
efektivně. Jednou z osvědčených možností je 𝐴* plánovač, jehož účinnost je
přímo závislá na použité heuristické funkci. Tato funkce by měla být přípustná
a zároveň poskytovat užitečné informace. Tato práce se věnuje hledání těchto
heuristik. Heuristiky nacházíme pomocí trénování neuronové sítě tak, aby pro-
dukovala sérii čísel. Ty jsou poté použity jako konvexní koeficienty pro již exis-
tující přípustné heuristiky. Heuristika, která vznikne jako konvexní kombinace
přípustných heuristik, je také přípustnou heuristikou, a když ji použijeme s
𝐴* plánovačem, je zaručené nalezení optimálního řešení. Naše heuristika se za-
měřuje na zmenšení počtu prozkoumaných stavů 𝐴* plánovačem, a tedy celkově
zkrácením času potřebného k nalezení plánu. Tato práce diskutuje výhody a
nevýhody tohoto přístupu a zároveň jeho fundamentální hranici výkonu.
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Chapter 1

Introduction

Planning problems find use in a wide variety of fields. They can be thought of as state-
searching problems, having defined sets of states, and transitions between them. Solving them can
be done using state-searching algorithms. One of those the 𝐴* algorithm is an effective and popular
choice. It, however, needs a heuristic function to work, and its performance depends heavily on
this heuristic function.

Finding a good heuristic function for planning problems can be difficult, as planning domains
vary in structure and the problems themselves vary in complexity. As such recent approaches have
had success by obtaining them by training a neural network to simulate a heuristic function from
already solved problems.

NeuroPlanner.jl [1] is a Julia library which takes this approach. It provides several different
representations of the planning problem, as well as various loss functions to help optimize the
parameters of these heuristic functions. The heuristic created by NeuroPlanner is not admissible.
This means that when using it with 𝐴* we do not get the optimality guarantee (2.2.1).

This work is an expansion of the NeuroPlanner library, creating a new admissible heuristic
ℎANH on top of the existing core functionalities. The ℎANH heuristic is created as a convex combi-
nation of several pre-existing admissible heuristics. It is then optimised to rank, in an attempt to
lower the number of states expanded during the 𝐴* algorithm as much as possible.

1





Chapter 2

Background in planning

We begin with the definitions and descriptions necessary for our work. This section covers how
planning problems look, how they are commonly solved and what we use to solve them.

2.1 Planning tasks
A classical planning task (problem) is a tuple

Π = (𝒮, 𝑠init, 𝑆goal, 𝐴, 𝑓) (2.1)

where:

• 𝒮 is a discrete finite set of possible states

• 𝑠init ∈ 𝒮 is the initial state

• 𝑆goal ⊂ 𝒮 is a set of goal states

• 𝒜 is a set of actions

• 𝑓 is a function mapping actions taken in a state to a new state

𝑠′ = 𝑓(𝑠, 𝑎) (2.2)

This definition was taken from [2].
For certain processes (such as calculating LM-Cut later on), it is beneficial to reformulate the

planning task in the STRIPS format. A STRIPS planning task is a tuple where:

Π = (ℱ , 𝑂, 𝑠init, 𝑠goal, 𝑐) (2.3)

• ℱ is a finite set of facts

• 𝒪 is a set of operators, which each are a triplet

o ∈ 𝒪 = (𝑝𝑟𝑒(o), 𝑎𝑑𝑑(o), 𝑑𝑒𝑙(o) (2.4)

• 𝑠init ⊂ ℱ is the initial state

• 𝑠goal ⊂ ℱ is a goal specification

• 𝑐 is the cost function of actions, 𝑐 : 𝒪 −→ R

In this definition, a state is any subset s ⊂ ℱ . Further operators work in the manner that operator
o can only be used in state s if its preconditions are satisfied in that state, i.e. 𝑝𝑟𝑒(o) ⊂ s. The effect
of the operator is as such: s′ = s∪ 𝑎𝑑𝑑(o)− 𝑑𝑒𝑙(o). Operators are also sometimes called actions, in
line with the classical task definition.

A fact can also be represented as a combination of predicates and objects. The objects are a
list of named variables that exist in the problem. The predicates are operators on these objects,
they take an input list of objects of length m and have a binary output {0, 1}, where a 1 represents

3



4 Background in planning

that the predicate with those objects is a fact present in the given state. The length m is in the
range ⟨0, 𝑛⟩, where 𝑛 is the number of objects in the problem. This means the predicates can also
take no objects as input (nullary predicates). This allows us to give the facts an internal structure
and establish relationships between them. A fact is also commonly referred to as an atom.

While we are defining planning tasks it is important to mention that they are usually not taken
as individual problems. They belong to domains, which are groups of problems with some common
logic and rules. These domains usually define how the states and actions look in classical planning
and how the different facts and operators interact in STRIPS. To understand a planning task fully,
we need both the domain definition and the problem definition. These are usually written in a
language called PDDL, which was created for this purpose.

Solving a planning problem means finding a plan. A plan is a sequence of actions (or operators
in STRIPS) which will when applied sequentially to the initial state, output the goal state of the
problem. Formally (for classical planning): A plan 𝜋 = (𝑎1, ..., 𝑎𝑛) is a sequence of 𝑛 actions 𝑎 ∈ 𝐴
such that the following holds:

𝑓(𝑠init, 𝑎1) = 𝑠1 (2.5)

𝑠𝑖+1 = 𝑓(𝑠𝑖, 𝑎𝑖+1) (2.6)

𝑠𝑛 ∈ 𝑆goal (2.7)

An optimal plan is then a plan whose cumulative cost of actions 𝑐𝑠𝑢𝑚(𝜋) =
∑︀𝑛

𝑖=1 𝑐(𝑎𝑖); 𝑎𝑖 ∈ 𝜋
is the lowest of any plan 𝜋 ∈ Π where Π is the set of all plans for the given problem.

𝜋𝑜𝑝𝑡 = arg min
𝜋∈Π

𝑐𝑠𝑢𝑚(𝜋) (2.8)

Finally, an optimal path is a sequence of states we get if we apply the actions from an optimal
plan sequentially to the initial state. We will note this as 𝑆𝜋.

2.2 Solving planning tasks
To solve planning tasks in a domain-independent way, state-searching algorithms are used.

These are algorithms such as the breadth-first search, greedy search etc.. However, in this work, we
focus on the 𝐴* algorithm. The 𝐴* algorithm is an algorithm for reaching goal states by searching
the state space and returning the plan needed to reach them. 𝐴* by always expands the state with
the lowest value of the merit function:

𝑓𝐴*(𝑠) = 𝑔(𝑠) + ℎ(𝑠) (2.9)

Here, 𝑔(𝑠) is the distance function which returns the cost of reaching the given state from the
initial state (or the distance to the initial state in uniform cost functions). ℎ(𝑠) is then any heuristic
function, which must be provided for the algorithm to function. Formally:

Algorithm 1 The 𝐴* algorithm
Require: A heuristic function h(s)

𝑄← {𝑠𝑖𝑛𝑖𝑡}
𝑉 ← {𝑠𝑖𝑛𝑖𝑡}
while 𝑄 ∩ 𝑆𝑔𝑜𝑎𝑙 = ∅ do

𝑠← arg min𝑞∈𝑄 𝑓𝐴*(𝑞)
𝐸 ← {𝑠′|∃𝑎 ∈ 𝐴; 𝑠′ = 𝑓𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛(𝑠, 𝑎); 𝑠′ /∈ 𝑉 }
𝑄← 𝑄 ∪ 𝐸 − 𝑠
𝑉 ← 𝑉 ∪ 𝑠

end while

Note that since both the transition function from planning task definition, and the merit
function from 𝐴* are traditionally called f, we label them 𝑓𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 and 𝑓𝐴* to differentiate. The
𝐴* algorithm is most commonly implemented using a priority queue (to get the argument minimum
quickly), where the priority is the merit function 𝑓𝐴* , as such the merit function is also sometimes
referred to as priority.

The reason we focus on 𝐴* is the following property:



2.3. Common admissible heuristics 5

Lemma 2.2.1 (𝐴* guarantee). If the heuristic used by the 𝐴* algorithm is admissible, then 𝐴* is
guaranteed to find an optimal plan.

This property is important, as it guarantees that any plan we find using the 𝐴* algorithm is
going to be optimal. Other common state-searching algorithms do not have this guarantee and,
therefore, we can not be sure if a shorter plan exists or not.

A heuristic function is a function mapping states to real numbers. It is used to indicate
inverse priority of states during search, the states with the lowest heuristic function value should
be searched first.

ℎ(𝑠) : 𝑆 −→ R (2.10)

A heuristic is admissible if it never overestimates the cost to goal and it is never negative. If the
optimal (true) cost to goal function is ℎ*(𝑠), then a heuristic function h is admissible if:

∀𝑠 ∈ 𝑆; 0 ≤ ℎ(𝑠) ≤ ℎ*(𝑠) (2.11)

Lemma 2.2.2 (Convex combination of admissible heuristics). Given a series of admissible heuristic
functions ℎ1, ..., ℎ𝑛, any convex combination of these heuristics is again an admissible heuristic
function. Formally if

ℎ′ = 𝛼1 * ℎ1 + 𝛼2 * ℎ2 + ... + 𝛼𝑛 * ℎ𝑛 (2.12)

subject to: ∑︁
𝛼𝑖 = 1; 0 ≤ 𝛼𝑖 ≤ 1;∀𝑖 ∈ {1, 2, ...𝑛} (2.13)

Then ℎ′ is admissible.

Proof: The minimum value the ℎ′ heuristic can achieve is the value of the heuristic ℎ𝑖 which
has the minimal value for the given state among all of the heuristics ℎ𝑖; 𝑖 ∈ {1, 2, ..., 𝑛}. This value is
achieved when the corresponding coefficient 𝛼 is equal to one, 𝛼𝑖 = 1, and the other coefficients are
equal to zero, 𝛼𝑗 = 0; 𝑗 ̸= 𝑖. Since this minimal heuristic ℎ𝑖 is admissible, then the minimal values
must be greater or equal to zero, ℎ𝑖(𝑠) ≥ 0;∀𝑠 ∈ 𝒮, and thus the ℎ′ heuristic has the same lower
bound, ℎ′(𝑠) ≥ 0;∀𝑠 ∈ 𝒮 as its minimal value is ℎ′ = 1 * ℎ𝑖. In the same way, there is a maximal
heuristic ℎ𝑙 which has the greatest heuristic value among all the heuristics ℎ𝑙; 𝑙 ∈ {1, 2, ..., 𝑛}, and
the maximal value of ℎ′ is reached when the 𝛼 coefficient of ℎ𝑙 is one 𝛼𝑙 = 1 and the other coefficients
are zero 𝛼𝑘 = 0; 𝑘 ̸= 𝑙. Since ℎ𝑙 is admissible the maximum value it can have for any state is equal
to the true cost-to-goal ℎ*, ℎ𝑙(𝑠) ≤ ℎ*(𝑠); ∀𝑠 ∈ 𝒮. The maximal value is then ℎ′ = 1 * ℎ𝑙, meaning
ℎ′ has an upper bound of ℎ*, meaning: ℎ′(𝑠) ≤ ℎ*(𝑠);∀𝑠 ∈ 𝒮. As such ℎ′ is admissible as it never
overestimates the true cost-to-goal and is never negative, 0 ≤ ℎ′(𝑠) ≤ ℎ*(𝑠);∀𝑠 ∈ 𝒮.

2.3 Common admissible heuristics
Thanks to the 𝐴* guarantee 2.2.1, admissible heuristics are desirable in the solving of planning

problems. Of the many that exist we will only focus on a select few which are commonly used. The
zero heuristic ℎ0 (the null heuristic), is a heuristic which assigns a 0 to every state.

ℎ0(𝑠) = 0;∀𝑠 ∈ 𝒮 (2.14)

Since the cost to goal in traditional planning can not be negative, the ℎ0 heuristic never overesti-
mates and is thus admissible.

2.3.1 ℎmax

The ℎmax [3] heuristic is a member of the deletion-relaxation family of heuristics. These heuris-
tics seek to estimate the true cost to goal, by finding the cost to goal of a simplified variant of the
problem. ℎmax works with the STRIPS definition of planning tasks and it simplifies the problem
by removing the deletion effect of operators:

∀o ∈ 𝒪 : o = (𝑝𝑟𝑒(o), 𝑎𝑑𝑑(o), 𝑑𝑒𝑙(o) −→ o = (𝑝𝑟𝑒(o), 𝑎𝑑𝑑(o), ∅) (2.15)

ℎmax then takes this simplified problem and constructs a relaxed-planning graph. This graph has
vertices represented by facts and edges by the altered operators. For our purposes, we can disregard
the edges and simply imagine the graph as a collection of facts ℱrpg that each fact is either in or not.
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Its creation starts by taking the facts in the initial state ℱrpg = ℐ and then works in iterations,
always adding a fact 𝑓 ∈ ℱ which is reachable from the current facts, and of those reachable
states it the operator that add it has the lowest cost, o = arg min 𝑐(o). Reachable here means
that all of the preconditions of an action that has the given fact as one of its add effects are
already in the planning graph, 𝑝𝑟𝑒(o) ⊂ ℱrpg, 𝑓 ∈ 𝑎𝑑𝑑(o). We also assign each fact a cost when
we add it to the graph, this is equal to the cost of the operator which adds it plus the cost of
the cheapest precondition of that operator. Let us call the function performing this mapping 𝛿,
𝛿(𝑓) = 𝑐(𝑜) + min𝑓𝑝𝑟𝑒∈𝑝𝑟𝑒(o) 𝛿(𝑓𝑝𝑟𝑒); 𝑓 ∈ 𝑎𝑑𝑑(o). The iterations end when all the reachable facts
have been added to the graph. This maps each fact in ℱ to the cost of achieving it from the current
state using the altered operators, i.e. what is the cumulative cost of operators which lead from the
initial state to a state containing the given fact. The output value of the ℎmax heuristic is then the
maximum of the costs of the facts in the goal state,

ℎmax(𝑠) = max
f∈𝑠goal

𝛿(f); (2.16)

The ℎmax heuristic is admissible, as even in the worst-case scenario in which removing deletion
effects of operators did not simplify the problem, it only outputs the cost of reaching the goal.

2.3.2 ℎLM−Cut

The ℎLM−Cut [4] heuristic is a heuristic from the landmark family of heuristics, they focus
on finding landmarks, which are actions or facts of planning problems which must be included by
every plan (or the path induced by the plan). In this work, we will be focusing on disjunctive action
landmarks (further just landmarks), which are sets of actions one of which must be included in
every plan. The ℎLM−Cut algorithm works to find these landmarks iteratively. It works by expanding
ℎmax, by relying on the values of the 𝛿 function from ℎmax. In each iteration, it first calls the ℎmax
algorithm and retrieves from it the 𝛿 function and the ℎmax heuristic value for that state. If the
heuristic value is infinite, then the value of the ℎLM−Cut heuristic is also infinite and the algorithm
terminates. Otherwise, it finds a supporter for each operator o ∈ 𝒪, which is the fact from the
preconditions of the operator with the highest cost in the 𝛿 function, let’s call the function mapping
operators to supporters supp:

supp(o) = arg max
f∈𝑝𝑟𝑒(o)

𝛿(𝑓) (2.17)

Example Let’s suppose we have a planning problem1 that has the facts ℱ = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓, 𝑔}, the
initial state ℐ = {𝑎, 𝑐}, goal state 𝒢 = {𝑎, 𝑔} and operators as follows:

𝑝𝑟𝑒(o) 𝑎𝑑𝑑(o) 𝑑𝑒𝑙(o) 𝑐(o)
o1 a b ∅ 1
o2 a,c d,e c 2
o3 b,d f d 1
o4 d,e g ∅ 3
o5 b,e g b 1

Then if we follow the ℎmax algorithm we will get the following values of the 𝛿 function:
𝛿(f)

a 0
b 1
c 0
d 2
e 2
f 3
g 3

And as such the values of the supp function will be (ties are broken arbitrarily here):
𝑠𝑢𝑝𝑝(o)

𝑜1 a
𝑜2 a
𝑜3 d
𝑜4 d
𝑜5 e

1This planning problem was provided by Ing. Michaela Urbanovská in private conversation.
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With the supp function, the algorithm then creates a justification graph. The oriented graph has
vertices represented by the facts 𝑓 ∈ ℱ and edges in the form of: (supp(o), f), f ∈ 𝑎𝑑𝑑(o). These
edges are labelled by the corresponding operator o. New facts and operators are also added during
the construction of the justification graph. First, a new initial fact ℐ, along with the operator oinit =
(ℐ, {𝑓 ; 𝑓 ∈ 𝑠init}, ∅). Second, a new goal fact 𝒢, with the operator ogoal = ({𝑓 ; 𝑓 ∈ 𝑠goal},𝒢, ∅).
Notably, the costs of both of the new operators are 0, 𝑐(ogoal) = 𝑐(oinit) = 0. New justification
graph edges are then created from these new facts and operators just like with the previous edges
and facts (𝑠𝑢𝑝𝑝(oinit) = ℐ, even though ℐ does not have a defined 𝛿 value).

Example continued: Let us continue the last example. First, we expand the set of facts with
{ℐ,𝒢}, ℱ = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓, 𝑔, ℐ,𝒢). Second, we add the new operators and their supporters:

𝑝𝑟𝑒(o) 𝑎𝑑𝑑(o) 𝑑𝑒𝑙(o) 𝑐(o) supp(o)
oinit ℐ a,c ∅ 0 ℐ
ogoal a,g 𝒢 ∅ 0 g

I G

a

bc

d

e

f

g

oinit, 0

oinit, 0

o2, 2

o1, 1

o2, 2 o4, 3

o3, 1

o5, 1

ogoal, 0

Figure 2.1: Example justification graph

Figure 2.1 shows the justification graph. The edges are labelled with a tuple of consisting of
the name of the operand o the edge represents, and the cost of that operand 𝑐(o). A simple way
of understanding the construction of the justification graph is that we first take all of the facts we
are working with, ℱ , to form the vertices and then we connect them with edges as described. Since
each fact in the add effect of each operator must be the end point of some edge (the justification
contains all the edges fulfilling the described form), we can simply cycle through all operators and
their add effects to generate the edges (see Implementation 4.2).

With the justification graph created, the algorithm then finds the 𝑁* and 𝑁0 partitions. The
𝑁* partition is a set of all the vertices of the graph, which are reachable from the goal fact 𝒢
using only edges whose operator (the label of the edge) has a cost of 0, 𝑐(o) = 0. The 𝑁0 partition
is then found as the set of all vertices reachable from the start fact ℐ without using edges that
contain a fact from the 𝑁* partition. This separates the graph into two parts (the leftover states
that belong neither in 𝑁* nor 𝑁0 are not used further in the algorithm). When an edge crosses
between these two parts, meaning its starting fact is from the 𝑁0 partition and the ending fact
is from the 𝑁0 partition, we call the operator labelling this edge a landmark. We then find the
landmark with the lowest cost and call that cost 𝜎. Finally, the cost of each landmark is lowered
by 𝜎, c(olm)t+1 = c(olm)t − 𝜎.

Example continued: Finding the 𝑁* and 𝑁0 for the example justification graph 2.1 is
simple. There is only one fact reachable from 𝒢 by using operators of cost 0, that being 𝑔, 𝑁* is
then 𝑁* = {𝑔,𝒢}. 𝑁0 is then all of the other facts, as they are all reachable from ℐ without passing
through {𝑔,𝒢}, i.e. ℐ = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓, ℐ}. Two edges start in 𝑁0 and end in 𝑁* - the edge labelled
o4 going from 𝑑 to 𝑔, and the edge labelled o5 going from 𝑒 to 𝑔. This means that o4 and o5 are
the landmark operators in this iteration. Of those, o5 has the lowest cost at 𝑐(o5) = 1, so we set 𝜎1
= 𝑐(o5) = 1 and we lower the costs of the landmarks by it. After the first iteration the operators
o4 and o5 now look like:
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𝑝𝑟𝑒(o) 𝑎𝑑𝑑(o) 𝑑𝑒𝑙(o) 𝑐(o)
o4 d,e g ∅ 2
o5 b,e g b 0

A new iteration then begins with the altered operator costs. The algorithm terminates when
the cost of reaching the goal facts in the relaxed planning graph becomes zero. The output of the
heuristic is then the sum of all 𝜎 across all (here N) iterations.

ℎLM−Cut(𝑠) =
𝑁∑︁

𝑖=1
𝜎𝑖 (2.18)



Chapter 3

Implementing heuristics by neural
networks

There are different ways how to design heuristic functions. Presently we know several major
approaches how to design usable heuristics, those being: deletion relaxation, critical paths, abstrac-
tions, and landmarks [4]. Due to the recent successes, we are trying to create them by machine
learning with neural networks.

3.1 Approaches with neural networks
The idea of using neural networks to find heuristics for classical planning is not new. The dif-

fering approaches vary primarily in the way the planning problem is represented. Each state within
a planning problem needs to be transformed into a form suitable for the neural network. Toyer et
al. [5] used Action Schema Networks which learn a common set of weights for all problems in a
domain. Shen et al. [6] created a representation of the planning using hyper-graph neural networks
to learn domain-independent heuristics. Chen et al. [7] expand on this method by creating three
new graph representations for planning problems, that are created from the lifted representation of
the problem. In general, the representations need to use the information about the state to make
sure it is distinguishable from the rest. This commonly means to take the facts in the state and
describe their inner structure - the predicates and the objects. The predicates and the objects are
encoded into feature vectors for the neural networks to be able to parse them. There is not a stan-
dardized way of doing this and new methods are still being developed [8]. If the models give two
different states an identical representation, then the model can not learn what the proper output
for each should look like and this causes problems (see Domain choice 5.3.2).

These representations are then commonly used so that the given neural network may learn
to produce a singular scalar output - the heuristic value. This does not result in an admissible
heuristic, as the model trains, it is not bounded by the true cost to goal, and as such we can
not guarantee that the output will not overestimate. This can be beneficial because the heuristic
not having an upper bound can allow the model to learn to recognize states that are not likely
to lead to the goal state quickly and assign them a high heuristic value. But if we want to take
advantage of the benefits of admissible heuristics, like the 𝐴* guarantee (2.2.1), then these methods
are insufficient.

3.2 The admissible neuro-heuristic
The solution we propose is the admissible neuro-heuristic ℎANH, which is an admissible heuris-

tic function realized by a graph neural network model. The heuristic value of this function for any
given state is calculated as a convex combination of the values of several admissible heuristic func-
tions for that state. Since they are admissible and the coefficients of the combinations are convex,
then according to lemma (2.2.2), the new heuristic is guaranteed to be admissible.

ℎANH(𝑠) = 𝛼1ℎ1(𝑠) + 𝛼2ℎ2(𝑠) + ... + 𝛼nℎ𝑛(𝑠) (3.1)

subject to: ∑︁
𝛼i = 1; 0 ≤ 𝛼i ≤ 1;∀𝑖 ∈ {1, 2, ...𝑛} (3.2)

9
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The heuristic is constructed in the following way. First, we select n admissible heuristic func-
tions ℎ1, ℎ2, ..., ℎ𝑛. Which functions we choose should not theoretically matter, as any admissible
heuristic should suffice, but as we will discuss later (in Choosing input heuristics 5.1.1), the perfor-
mance of the individual heuristics affects the output noticeably. Secondly, we alter the final layer of
the neural network model by increasing the dimension of the layer to 𝑛 from 1 to match the number
of heuristics. These output scalars will be the pre-normalization coefficients of the heuristics. Now
we wrap the old final layer 𝑓ofl of the model with the new final layer 𝑓nfl which was created as
follows:

(𝛼1, 𝛼2, ..., 𝛼n) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(fofl(x)) (3.3)

𝑓𝑛𝑓𝑙(𝑥) =
𝑛∑︁

𝑖=1
(𝛼𝑖ℎ𝑖(𝑠)) (3.4)

Where x is the input data of the final layer. Put plainly, the new final layer first calls the old final
layer to get the pre-normalization coefficients, then calls softmax on them, ensuring their convexity.
Finally, we calculate the combination and this number is the output heuristic of the model. This
evades the problem of the neural network output being unbounded. The softmax function creates
this bound by itself, not allowing any of the coefficients 𝛼𝑖 to be outside of the < 0, 1 > range.

The notable advantage of the ℎANH heuristic is being able to easily take advantage of other
admissible heuristics by simply adding it to the list of input heuristics. As the ways of designing
heuristics are varied so are the performances in varying situations. The ℎANH heuristic can learn
in which situations which of the input heuristics performs best and simulate the outputs of the
heuristic for the given situation. It can find that a certain combination of the heuristics gives better
information. The disadvantage is that the heuristic requires the evaluation of multiple heuristic
functions per the evaluation of ℎANH. With simple heuristics this is negligible, but for more com-
plex heuristic functions the computation times can rise sharply. A slow heuristic that gives good
information might perform worse than a fast heuristic that gives bad information simply because
it manages to expand orders of magnitude more states during the search.

3.3 Realizing the admissible neuro-heuristic

3.3.1 NeuroPlanner
The ℎANH is realized as an extension of the NeuroPlanner.jl [1] library. The library facilitates

the creation of heuristic functions based on neural networks. It features implementations of the
above-mentioned problem representations (ASNets, HyperGraphs... etc.) [6, 7, 5] . It creates an
extractor that converts the PDDL problem into the corresponding representation. This extractor
is domain-dependent, it receives the domain for which it functions during creation. This means the
created ℎANH heuristic is also domain-dependent. It then uses the Mill.jl [9] library to produce a
model compatible with the representation. This model is then trained using one of NeuroPlanner’s
implementations of loss functions and by using the Flux.jl library which provides the means for
training the model. For our purposes we will be using the 𝐿* loss function [10].

3.3.2 𝐿* loss function, optimizing to rank
The chosen loss function 𝐿* is notable, as typically, neural network-based heuristic functions

are optimized for cost-to-goal, i.e. approximating the true cost of the actions of the optimal plan.
The loss function then penalizes distance from the true cost-to-goal. 𝐿* on the other hand is one
of a family of loss functions which focuses on optimizing to rank. This means that the 𝐿* loss
function tries to achieve a situation in which the states s on the optimal path have a lower 𝑓𝐴*(𝑠)
than those adjacent. This means that we are not attempting to get as close to the true cost-to-goal
heuristic, and instead we are only attempting to ensure the presence of inequalities [10]:

𝑓𝐴*(𝑠𝑜𝑝𝑡
𝑖 ) < 𝑓𝐴*(𝑠𝑗);∀𝑠𝑜𝑝𝑡

𝑖 ∈ 𝑆𝜋 (3.5)

Where 𝑠𝑗 is a state adjacent to the state on the optimal path 𝑠𝑜𝑝𝑡
𝑖 . Adjacent in this sense means

any state not from the optimal path which could be competing with 𝑠𝑜𝑝𝑡
𝑖 for expansion.
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Figure 3.1: Adjacency example

For any given optimal state, this means not only non-optimal states sharing the same open
state but also non-optimal states that were encountered earlier during the search. The figure (5.9)
showcases an example of the search tree, 𝑠𝑜

1 being the initial state and 𝑠𝑜
8 being the goal state, the

optimal path marked in red. In this case, the adjacent states to the optimal state 𝑠𝑜
4 are not only

non-optimal states 𝑠𝑛
3 , 𝑠𝑛

4 , but also states 𝑠𝑛
1 , 𝑠𝑛

2 .
𝐿* specifically then is a loss function that evaluates how close any given plan is to being

optimal to rank. If 𝑓𝐴*(𝑠𝑜𝑝𝑡
𝑖 ) = 𝑔(𝑠𝑜𝑝𝑡

𝑖 ) + ℎ(𝑠𝑜𝑝𝑡
𝑖 ) and 𝑓𝐴*(𝑠𝑗) = 𝑔(𝑠𝑗) + ℎ(𝑠𝑗), then the formulation

of its condition on states is as such [10]:
𝑟(𝑠𝑜𝑝𝑡

𝑖 , 𝑠𝑗) = 𝑔(𝑠𝑜𝑝𝑡
𝑖 )− 𝑔(𝑠𝑗) + ℎ(𝑠𝑜𝑝𝑡

𝑖 )− ℎ(𝑠𝑗) > 0 (3.6)
The loss function then penalizes the breaking of these inequalities. Note that the original definition
works with a heuristic function defined as ℎ(𝑠, 𝜃), where 𝜃 are the function parameters.

3.3.3 Optimizing for fewest expanded states
The admissible heuristic has an advantage over conventional approaches in generating an

admissible heuristic function; it is able to expand fewer states during planning with the 𝐴* planner.
This is given by two factors. The first factor, the 𝐿* loss function mentioned above, allows us to
avoid forcing the heuristic value to be close to the true cost-to-goal. This is beneficial as it means
that states on the optimal path can have a much lower heuristic value than the true cost-to-goal,
thus gaining higher priority and being expanded sooner. The second factor facilitates this: the
list of input heuristics chosen will always include the zero heuristic ℎ0 (the null heuristic). This
heuristic returns 0 for any given state, and therefore it is always admissible. The zero heuristic has
numerous benefits, such as being extremely simple to calculate at any time and the aforementioned
admissibility, the main reason for it being used here is its use as a way to lower the value of the
convex combination. As described before, the weights (coefficients) of the input heuristics must
sum to one

∑︀
𝛼𝑖 = 1. Since we are combining admissible heuristics, they can not be negative, and

so if our list of heuristics does not include ℎ0 then the combination would not necessarily be able
to become 0. The minimum possible value of ℎANH would be reached when 𝛼𝑖 = 1; 𝛼𝑗 = 0; 𝑖 ̸= 𝑗
where 𝛼𝑖 is the alpha corresponding to input heuristic with the lowest value for the given state
ℎ𝑚𝑖𝑛 = arg minℎ∈𝐻 ℎ(𝑠), where H is the list of all of the input heuristics of ℎANH. The minimum
possible value over all the possible combinations of 𝛼𝑖 coefficients would then be:

min
𝛼

ℎANH(𝑠, 𝛼) = ℎ𝑚𝑖𝑛(𝑠) (3.7)

The ℎ0 heuristic allows us then to get the minimum value of the ℎANH to be 0, which is the minimal
value of any admissible heuristic. This, in combination with 𝐿*, boosts the capacity of the neural
network model to push down the heuristic values on the optimal path. The 𝐴* algorithm then
expands these states faster, leading to fewer states being expanded. In a similar fashion 𝐿* also
drives up the heuristic values of non-optimal states as much as possible, giving them less priority
and leading to them being expanded less often.
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3.3.4 The upper limit of performance
Due to how the admissible neuro-heuristic ℎANH is constructed, we know the lower and upper

bounds on its values. The lower bound is 0 as described above. We can similarly get the upper
bound. We can also quickly set an upper bound from the fact that the ℎANH heuristic is admissible,
and therefore it is bound by the true cost-to-goal ℎ*.

max
𝛼

ℎANH(𝑠, 𝛼) = ℎ*(𝑠) (3.8)

We can lower this upper bound further, in a similar process as above, when 𝛼𝑖 = 1, which
is the alpha corresponding to the input heuristic with maximum value for that state. ℎ𝑚 =
arg maxℎ∈𝐻 ℎ(𝑠), and 𝛼𝑗 = 0; 𝑖 ̸= 𝑗, where 𝐻 is the list of input heuristics (we are naming
the maximum input heuristic ℎ𝑚 instead of ℎmax to avoid confusion with the deletion relaxation
heuristic ℎmax). In other words, the maximum possible value the ℎANH heuristic can output for
any state and any combination of 𝛼𝑖 coefficients is the value of the maximum input heuristic ℎ𝑚

in that state:
max

𝛼
ℎANH(𝑠, 𝛼) = ℎ𝑚(𝑠) (3.9)

Thus the output range of ℎANH for any chosen heuristics and any state s of any planning problem
is bound by ⟨0; ℎ𝑚(𝑠)⟩.

ℎANH(𝑠) : 𝑆 −→ 𝐼 ⊂ ⟨0; ℎ*(𝑠)⟩; 𝑠 ∈ 𝑆 (3.10)

The 𝐴* algorithm does not only take into account the heuristic value, however. The 𝑔 part of
𝑓𝐴*(𝑠) = 𝑔(𝑠) + ℎ(𝑠) is the function measuring the distance from the start state. The problem
then arises, that we cannot control the value of 𝑔, it simply grows as we get further away from the
initial state. This presents a problem, we only want 𝐴* to expand the states on the optimal path,
but since the path is optimal (meaning there is no shorter way to get to the goal and by extension,
any of the states on the optimal path) the 𝑔 function will grow linearly over its length. Naturally,
non-optimal states close to the initial state will have a lower 𝑔 than optimal states further away
from it. This is the reason why 𝐴* will expand a lot of non-optimal states even in situations with
good heuristic functions. If we want to lower the number of states expanded, then we need to make
the differences between optimal and non-optimal states in the value of the merit function 𝑓𝐴*(𝑠)
maximal possible. The heuristic function ℎ chosen for 𝐴* needs to compensate for the growth of
the distance function 𝑔.

The ideal situation for our heuristic function ℎANH is:

ℎANH(𝑠) = 0; 𝑠 ∈ 𝑆𝜋 (3.11)

ℎANH(𝑠) = ℎ𝑚(𝑠); 𝑠 ∈ 𝑆 − 𝑆𝜋 (3.12)

Where 𝑆𝜋 is an optimal path of the problem.
As this is the best possible scenario, it also represents the fundamental upper limit on our

approach. 𝐴* with ℎANH will never expand less states than in this configuration. Therefore, these
are the heuristic values we are attempting to achieve.



Chapter 4

Implementing LM-Cut

Because the implementation of the ℎLM−Cut heuristic was key for this work (see Choosing input
heuristics 5.1.1), and as the evaluation time of the implementation is important to the performance
of the ℎANH heuristic, we would like to show how the ℎLM−Cut heuristic was put into practice.

4.1 SymbolicPlanners
SymbolicPlanners.jl [11] is a Julia library that provides planners and heuristics for those

planners, in order to solve planning problems. NeuroPlanner is made to function as a heuristic
from SymbolicPlanners, the neuro-heuristic that is the output of NeuroPlanner is a type extension
of the SymbolicPlanners heuristic type. This allows it to be easily slotted into any of the planners
that SymbolicPlanners provides, most notably for us, the 𝐴* planner. The 𝐴* planner is a planner
that uses the 𝐴* algorithm to solve a given planning problem. It also provides information about
the search, notably the success status, the search tree, the priority queue and the search frontier.
The priority that the SymbolicPlanners 𝐴* planner works with is not a scalar, but instead a tuple.
This tuple has the form of (𝑓𝐴* , ℎ, 𝑠𝑖𝑧𝑒), where 𝑓𝐴* is the merit function of the 𝐴* algorithm, ℎ
is the heuristic of the planner and 𝑠𝑖𝑧𝑒 is the size of the search tree at the moment the state is
added to the priority queue. The priority of the planner functions in lexicographic order, meaning
that the expanded state always has the minimum 𝑓𝐴* , and if there are multiple states with equal
𝑓𝐴* then the tiebreak is decided based on which state has the lower heuristic value, and if those
are tied as well then it is based on the size of the search tree. This is beneficial to us, as we will
be manipulating the value of the heuristic function and therefore, having the ability to prefer the
states with lower heuristic values without breaking the 𝐴* guarantee 2.2.1 is a significant detail
(see Tiebreaking 5.3.4).

The SymbolicPlanners library itself is built on top of a library called PDDL.jl [12]. This is a
Julia library which serves to parse the PDDL language and simulate planning problems. It allows
loading domain and problem files, checking what actions are available in what state, executing
these actions on states to transform them into new ones etc.. This is key for the SymbolicPlanners
library as it provides the "low-level" functions needed to interact with and solve planning problems.

SymbolicPlanners provides numerous heuristics to aid the aforementioned planners. Impor-
tantly, these heuristics do include the deletion-relaxation heuristic ℎmax but do not include the
ℎLM−Cut heuristic. During the making of this work, we found out that ℎLM−Cut would be pivotal
for our work (Choosing input heuristics 5.1.1), so we chose to implement the heuristic ourselves.

4.2 Implementation
Since the SymbolicPlanners library has an implementation of ℎmax it would be an obvious

choice to use the already existing version of the algorithm in the implementation of the ℎLM−Cut
heuristic, which works with ℎmax values. SymbolicPlanners has a function which creates a relaxed
planning graph from which it computes various deletion-relaxation heuristics (such as ℎmax and
ℎadd). This function crucially does not allow the modification of action costs in a simple way.
As this is something necessary for ℎLM−Cut to function, the first step was modifying this graph-
building function. The modified variant takes a dictionary mapping actions to their costs as an
argument, allowing simple outside manipulation. The algorithm itself is then built as follows. We

13
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first extract the initial costs of actions into a dictionary 𝑐. Then we add the actions oinit and ogoal
into this dictionary and set their value to 0. Then we use the altered graph-building function from
before to get the 𝛿 function and the ℎmax value of the initial setup. If the ℎmax value is infinite,
then the problem is unsolvable and the algorithm terminates. Otherwise, it enters a loop. This
loop begins by finding the supporters of each action, by cycling through all of the preconditions
𝑝𝑟𝑒(o) of every function o and finding the one with the highest value in the 𝛿 function. Then the
justification graph is created. Here we represent it as a list of edges. These edges are created by
cycling through all of the actions and all of the facts in the add effect 𝑎 ∈ 𝑎𝑑𝑑(o) and adding all
possible triplets of (𝑠𝑢𝑝𝑝(𝑜), 𝑎, 𝑜) to the justification graph list. We then find the 𝑁* partition by
performing a modified breadth-first search from the new goal fact 𝒢 (as a shortcut we do not have
the 𝒢 fact at all, and simply start the search by searching the edges labelled ogoal). We maintain a
queue from which we take a fact, then we cycle through the justification graph to find edges that
contain this fact as the end point, and if they start outside of 𝑁* and their cost is 0 then we add
the start fact of the edge to 𝑁* and enqueue it. In the same manner, we find the 𝑁0 partition, we
start by searching edges labelled oinit and then perform a BFS through the graph using a queue.
The condition of adding a fact to 𝑁0 is that it is neither in 𝑁0 nor in 𝑁*, the cost of the edge can
be non-zero. With the two partitions, we find the landmarks by again cycling the graph and finding
which edges start in 𝑁0 and end in 𝑁*, of those we select the one with the lowest cost 𝑐(o), call
this cost 𝜎, lower the cost of the all of the landmark actions in the 𝑐 dictionary by 𝜎 and then run
a new iteration by building the relaxed planning graph again with the new cost dictionary. This
stops when the ℎmax cost returned by the relaxed planning graph function is 0 and the output is
the sum of all 𝜎 throughout all iterations.

4.3 Optimization
The above-mentioned implementation works and produces correct values of the ℎLM−Cut

heuristic. It was made to mimic the definition of the heuristic closely, in order to be correct,
but this has made it very slow. The computational speeds of heuristics are key as they allow
the planner to expand more nodes, and are especially key for our approach which combines more
heuristics. In consequence, we would like to discuss the optimizations and speedups we achieved.

The main problem is the justification graph. Having to loop through the entirety of it to find
an edge which matches a fact is extremely inefficient. At the same time the graph needs to be
traversed both forwards (during the finding of 𝑁0) and backwards (during the finding of 𝑁*) and
it is difficult to achieve that in a single data structure without resorting to some level of inefficient
searching. The solution we used was to build two graphs, one for forward searching, and one for
backwards searching.

The graph for backwards searching is simpler, it consists of an array of arrays of integers which
is exactly as long as the number of all facts. At the index of each fact, there is stored an array of
indexes. These indexes detail which facts are the start points of edges which contain that given fact.
This means during backwards search we can simply index into the array and get a list of indexes
to which we can move. During the creation, we also right away check the costs of the actions which
connect these facts, and we only allow insertion into the backwards justification graph when the
cost of the action is 0. This means we do not have to constantly recheck the prices of actions during
the backwards search. The forwards justification graph is an array of arrays of tuples which is also
as long as the number of facts. At the index of each fact, there are stored tuples that detail to
what actions the given fact is a supporter, and what facts those supported actions lead to. The
tuple has the form (o, [f1, f2, ..., fn]) where o is the label of the supported action, and [f1, f2, ..., fn]
are the end point facts of that supported action. During forwards search this allows us to simply
index any given fact into this graph to find out where we can continue the search. Those were the
major changes to the algorithm which were also the cause of the most significant speedup. Other
optimizations were also made. The finding of landmarks was moved from a standalone operation to
the finding of the 𝑁0 partition. During the finding of it, we are sure that the fact we are currently
searching is in 𝑁0 and we are looking at what facts are connected to it, therefore, if we find that
the connected fact is in the 𝑁* partition, we can add it to the set of landmarks right away. The
creation of the forward and backward justification graphs was altered so that it happened with
just one cycle through all of the actions, reducing the necessary work and improving cache hits.
The finding of supporters was changed to use an inbuilt Julia argmax function instead of a simple
cycle through the preconditions.
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Figure 4.1: Comparison of implementations of ℎLM−Cut

In figure 4.1 are the histograms comparing the benchmarked speeds of the new versus the
old implementation on one larger blocksworld problem. The new implementation performed sig-
nificantly better. The median was lowered from 225.23 milliseconds to just 6.26 milliseconds. It
should also be noted that the frequencies in the figure are normalized. This is because the old
implementation was only able to compute the heuristic 23 times, compared to 743 times for the
new implementation.





Chapter 5

Experimental evaluation

After constructing the admissible heuristic ℎANH as described in the previous chapter, we
move to test and evaluate its performance.

5.1 Preparation

5.1.1 Choosing input heuristics

Choosing the input heuristics is an important part of the ℎANH heuristic, its performance can
change significantly based on their properties. In the testing so far we have limited ourselves to
two heuristics, this was done to keep the entire process simpler and to see which heuristics would
work well with ℎANH. The only necessary constraint we have on the heuristics is that they must
be admissible so that the 𝐴* guarantee 2.2.1 is satisfied. What we want from these heuristics is
primarily giving "good information". This means representing as accurately as possible which states
are closer to the goal and which are not. Secondarily we would prefer the heuristics evaluate on
any given state in a reasonable time, as we will be evaluating multiple on each state.

The first input heuristic is always the zero heuristic ℎ0. While this heuristic carries no infor-
mation of its own as it can not differentiate between states, it is admissible and evaluated instantly.
Since the ℎANH heuristic outputs a convex combination of the input heuristics, the ℎ0 heuristic
is used as a way the reduce the value of the other heuristics if necessary. Without it the lowest
possible value for ℎANH to output would be the minimum of the non-zero heuristics, restricting the
value range.

The second chosen heuristic was the ℎLM−Cut heuristic. ℎLM−Cut is admissible and provides
good information by approximating the true cost to goal well. This is important as ℎLM−Cut is
going to be providing the upper bound of the output of the ℎANH heuristic. The computation times
of the ℎLM−Cut heuristic proved not to be a problem, in large part due to the optimizations we
have made to our implementation 4.3.

5.1.2 Evaluation environment

The primary domain for training was the blocksworld domain. Blocksworld had a lower per-
centage of states that were indistinguishable in the representation of the graph neural network.
ℎANH struggles greatly with these states, as it needs to identify the states that are on the optimal
path.

The graph neural network model representing the ℎANH heuristic is generalised to work with
any underlying representation that NeuroPlanner supports, but all testing was done with the
HyperGraph [6] representation (as described before). This was chosen as it was faster than the
alternatives and it also performed well during training.

The model itself was created by the through the Mill.jl [9] library. This library can take on
the input of an initial state from a representation and makes a model that can accept (work
with/process) the passed state. With the model created this way, we replace the final layer with
our own custom one.

We chose the 𝐿* loss function to use in training.

17
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5.2 Verifying the concept
To ensure that the concept of the ℎANH heuristic works correctly and also to show closely

how the heuristic function works, we will now go through an example where the training set of
the model is a single small blocksworld problem. The figures below showcase a search tree of an
𝐴* planner with the ℎLM−Cut heuristic. The nodes in red are the nodes of the optimal path (the
trajectory), and the grey nodes are the non-optimal nodes. The search is here visualised top to
bottom, meaning the very top red state is the start state, and the one at the bottom is the goal
state. The arrows denote which states were expanded from which. Finally, the numbers in the
nodes are the heuristic values of those nodes, in this case, ℎLM−Cut values.

6.0

5.0 5.0

4.0 6.0 5.0

3.0 3.0 6.0

4.0 2.0 3.0 4.0

5.0 1.0 4.0 4.0

0.0

Figure 5.1: A search tree of an 𝐴* planner with ℎLM−Cut

The ℎANH heuristic outputs from its model convex coefficients for its input heuristics, which
then get combined to create the final heuristic value. In this case, the model outputs coefficients
𝛼1 and 𝛼2 which get multiplied with ℎLM−Cut and ℎ0 respectively. The output is then:

ℎ𝐴𝑁𝐻 = 𝛼1 * ℎLM−Cut + 𝛼2 * ℎ0 (5.1)

But since the ℎ0 heuristic is always 0, we can simplify to:

ℎ𝐴𝑁𝐻 = 𝛼1 * ℎLM−Cut (5.2)

And as such we can also look at finding the ℎANH heuristic for a given state as finding the 𝛼1
coefficient for ℎLM−Cut. The ℎANH heuristic takes as its minibatches ℎLM−Cut search trees, so we
can demonstrate how it works on the search tree found 5.1.
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3.03 2.75

2.61 3.37 2.97

1.75 1.72 3.13

2.35 1.14 1.76 2.52

2.74 0.54 2.17 2.34

0.0

Figure 5.2: ℎANH output before training

0.64

0.61 0.55

0.65 0.56 0.59

0.58 0.57 0.52

0.59 0.57 0.59 0.63

0.55 0.54 0.54 0.58

0.51

Figure 5.3: ℎANH 𝛼1 coefficient before training
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When a new model is created it is initialized with random weights. On the left 5.2 are the
heuristic values of ℎANH with these newly created weights. On the right 5.3 are the values of the
𝛼1 coefficient for every state before training, signifying the percentage of the value of ℎLM−Cut in
that state.

The 𝐿* loss function that is used during training penalizes unfulfilled inequalities. Here, the
inequalities are that the states on the optimal path (red) should have a lower heuristic value than
the non-optimal states (grey). If we look at the results after training, we can see that this is
achieved.

0.0

0.0 5.0

0.0 6.0 5.0

0.0 3.0 6.0

4.0 0.0 3.0 4.0

5.0 0.0 4.0 4.0

0.0

Figure 5.4: ℎANH output after training
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0.0 1.0 1.0
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1.0 0.0 1.0 1.0

1.0 0.0 1.0 1.0

0.2

Figure 5.5: ℎANH 𝛼1 coefficient after training

The ℎANH heuristic both successfully reduces the heuristic value of the optimal states to zero,
it also raises the heuristic values to the maximum it can (the value of the ℎLM−Cut heuristic) 5.4.
On the right 5.5 we can see that this is achieved by reducing the 𝛼1 coefficient to 0 for optimal
states, and 1 for non-optimal. Note that even though the 𝛼1 coefficient for the goal state is not
0, this does not affect the heuristic output as ℎLM−Cut, like all admissible heuristics, has a value
of 0 in the goal state. Finally, we can run the 𝐴* planner again, this time with the trained ℎANH
heuristic:

0.0

0.05.0

6.0 0.0

0.03.0

4.0 0.0

0.0

0.0

Figure 5.6: 𝐴* planner with trained ℎANH heuristic

The trained ℎANH heuristic did not expand any non-optimal nodes, improving on the ℎLM−Cut
search.
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5.3 Dead ends

In the making of this work, many dead ends to progress were encountered. They are listed
here both so that future works may avoid them and illustrate how this work came to be.

5.3.1 ℎmax

First choice to compliment ℎ0 was the ℎmax heuristic, a deletion-relaxation heuristic. It was
chosen because it is simple and admissible. This choice proved problematic as it turned out that
ℎmax did not provide a wide enough range of values. Especially on small instances, ℎmax assigned
most states one of two values, either ℎ𝑚𝑎𝑥(𝑠𝑖𝑛𝑖𝑡) or ℎ𝑚𝑎𝑥(𝑠𝑔𝑜𝑎𝑙). The number of states for which
ℎmax provided a value different from these were a small minority. This led to the model often failing
to learn at all, because the information provided by ℎmax was simply not enough. For example,
here are histograms of heuristic values provided by ℎmax and ℎLM−Cut during searches of a larger
blocks problem:

Figure 5.7: Histogram of ℎmax values Figure 5.8: Histogram of ℎLM−Cut values

ℎLM−Cut provided a wide range of values, focused mostly on higher values 5.8. ℎmax provided
a narrow range of heuristic values concentrated mostly into one of three numbers 5.7. This made it
difficult to train the ℎANH model, as the heuristic output of ℎANH was bounded at that time by the
maximum ℎmax value in that state. This made the difference between states on the optimal path
and off the optimal path quite small and caused the heuristic to perform poorly. Also, note that the
counts in the histograms are normalized. As ℎmax is faster to evaluate and gives less information,
it expanded an order of magnitude more states, yet still gave less varied outputs

5.3.2 Domain choice

The initial primary domain for testing was not blocksworld, but ferry. During training with
ferry, however, we were not able to achieve consistent results, even when training on a single
problem. The goal was to get the results described above 5.2 - heuristic values of 0 on the trajectory
and heuristic values equal to ℎLM−Cut elsewhere, as that should always be the result of the 𝐿* 3.3.2
loss function on the minibatch. However, commonly there would be optimal states that had non-zero
heuristic values and non-optimal states with heuristic values of zero. Upon further investigation it
turned out that the graph neural network was not able to properly distinguish between several of
the states in the minibatch - it assigned them the same representation. During training then this
caused problems as one representation could be both on the optimal path and off of it, causing
these irregularities. The expressiveness of the underlying model is not within the scope of this work
and is currently being addressed in other works [8]. This has been solved by using the blocksworld
domain instead of ferry, as ferry had a large problem with these indistinguishable states, which is
significantly reduced in blocksworld.

5.3.3 Minibatches

The 𝐿* 3.3.2 loss function is normally assigned a specific minibatching method by the Neuro-
Planner.jl library, This method usually takes the trajectory and expands every state on it once.
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Figure 5.9: And example of a 𝐿* minibatch

The inequalities of 𝐿* are then set so that the states on the optimal path have a lower heuristic
value than the non-optimal states that have been encountered during the search so far. For example
optimal state 𝑠𝑜𝑝𝑡2 in the figure has a lower heuristic value than states 𝑠1−2 and optimal state 𝑠𝑜𝑝𝑡6
has lower heuristic values than states 𝑠1−9. This approach has several benefits. The time to create
these minibatches is relatively short and in theory these inequalities should be enough to force
the 𝐴* planner to only expand states on the optimal path, as their heuristic values would be
only compared to these adjacent states. This approach works well when creating non-admissible
heuristics focused on coverage (that is how NeuroPlanner operates by default). However, the 𝐴*

planner also takes into account the distance from the start state. Through certain combinations
of low values of ℎLM−Cut in non-optimal states and problems which have long optimal paths, non-
optimal states can be expanded. This causes significant problems as these new states gained from
this expansion are outside of the training set, and the ℎANH heuristic does not know what values to
assign these states. If it assigns low values, then these states can also be expanded, compounding
the problem and lowering performance.

The solution to this is that the minibatch is modified. During the creation, the problem in
question is solved with the 𝐴* planner with the ℎLM−Cut heuristic. The entire search tree produced
from this process is then used as a minibatch for training. This in the majority of cases increases
the number of non-optimal states in the minibatch and thus the number of inequalities generated.
This gives some leeway if a non-optimal state is expanded, as there is a chance that the new state
is also in the training set. It also increases the generalization capabilities of the heuristic, assuring
that results improve even when a state that has never been seen before is encountered.

5.3.4 Tiebreaking

At the end of testing, after all of the above issues were addressed, the ℎANH was still con-
sistently performing worse than ℎLM−Cut in term of expanded nodes when training and testing
on a single planning problem. After closer inspection, this turned out to be caused by the model
outputting real numbers instead of integers. Since most heuristics are approximating cost to goal
which is the number of steps to reach the goal, they are only outputting whole numbers. Since
ℎANH is represented by a graph neural network model, which is evaluated by doing a large number
of calculations with floating point numbers, its output too is a floating point number. This causes
problems as most states on the trajectory are going to have a heuristic value of zero and thus their
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merit function will be equal to the integer distance from the start.

𝑓𝐴* = 𝑔 + ℎ; (5.3)

ℎ = 0 (5.4)

𝑓𝐴* = 𝑔 (5.5)

Whereas the non-optimal states will have their merit function composed of an integer distance
from the start, but also a heuristic function that is approaching the value of the ℎLM−Cut from
below, but not being equal to it. A state with ℎLM−Cut value of 6 could have a ℎANH values of
5.999999998. This then means that in cases where a tie should occur, it does not. An optimal state
with merit function 𝑓𝐴*(𝑠) = 12 + 0 would not tie a non-optimal state with a merit function value
of 𝑓𝐴*(𝑠) = 6 + 5.999999998, even though we would like it to. This is because during tiebreaking,
we have a clear way how to break the tie in favour of the optimal state, that being to always favour
the state with the lower heuristic value. This was solved by simply rounding all of the results of the
ℎANH model after training was done, thus forcing the tiebreaks and also making the heuristic behave
more like a typical heuristic (by giving discrete outputs). This boosted performance significantly
and led to ℎANH outperforming ℎLM−Cut in the number of expanded nodes on the training set.

5.4 Performance
We evaluated several domains with multiple different settings of the ℎANH neural network

model. We will be showing the performance of the best-performing model and comparing it to the
ℎLM−Cut heuristic on the same problems from the same domains. ℎLM−Cut is the most sensible
comparison as ℎANH is essentially expanding the heuristic with the addition of ℎ0.

domain coverage
ℎANH

coverage
ℎLM−Cut

blocks 0.68 0.72
elevators_00 0.64 0.80

ferry 0.68 0.68

Table 5.1: Comparison of coverage

The table 5.1 above shows the coverage of each heuristic across the tested domains, i.e. what
percentage of the planning problems in that domain the 𝐴* planner could solve with the given
heuristic. This data only covers problems that were not part of the training set for the ℎANH
neural network model. Across the board, the ℎLM−Cut heuristic was able to solve more problems
than the ℎANH heuristic. Moreover, the ℎANH heuristic was not able to solve any problems that
the ℎLM−Cut heuristic did not solve.

The performances of each heuristic also varied in the problems that were solved by both:

domain total expanded
ℎANH

total expanded
ℎLM−Cut

blocks 34948 30537
elevators_00 1064 959

ferry 4884 4068

Table 5.2: Number of expanded states comparison

The table 5.2 showcases the total number of states expanded by the given heuristic across all
problems solved by both heuristics in that domain. Even when both heuristics solved the problem
the ℎANH heuristic expanded more states.

Furthermore, even when the number of expanded states was similar (such as in the eleva-
tors_00 domain), the solution times were vastly different 5.3. The ℎANH heuristic is slower across
the board, having to both calculate the neural network representation and the value of the ℎLM−Cut
heuristic for any given state.
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domain solution time
ℎANH

solution time
ℎLM−Cut

blocks 658.45 275.80
elevators_00 185.50 54.59

ferry 45.96 11.06

Table 5.3: Solution times comparison [s]

5.5 Discussion
The coverage gap can be better understood by looking at the problems that ℎLM−Cut managed

to solve, while ℎANH did not, specifically at the total number of expanded states:

domain total expanded
ℎANH

total expanded
ℎLM−Cut

blocks 20717 32995
elevators_00 680 1085

ferry - -

Table 5.4: Expanded states on problems only ℎLM−Cut solved

Here 5.4 and in the table of times 5.3 the main advantage ℎLM−Cut has over ℎANH is visible.
ℎLM−Cut is significantly faster than ℎANH and thus can expand more states in the same amount
of time, improving the odds of finding the goal state. On the problems where ℎANH did not find
the goal, but ℎLM−Cut did, ℎLM−Cut expanded more state even though it stopped expanding after
finding the goal state, while ℎANH kept expanding until it reached the limit time of the 𝐴* planner.
This may be confusing as ℎANH expanded more states than ℎLM−Cut on problems they both solved
5.2. This is because the problems that were solved by both heuristics are in some sense "easier"
than the ones that only ℎLM−Cut solved. Note that in the ferry domain, there is no data as both
heuristics had the same coverage.

The speed difference between the two heuristics is fundamentally unsolvable with our current
approach, as ℎANH must also evaluate ℎLM−Cut as part of its process. Therefore the ℎANH heuristic
has to focus on providing better information for the search. As can be seen on 5.2, this is not the
case. The 𝐴* planner with ℎANH has to expand more states to reach the goal state than 𝐴* with
ℎLM−Cut. This can be due to a variety of reasons. The problem of indistinguishable problems we
discussed as being between multiple states of a problem can also happen across multiple problems.
If two states across two different states have the same representation in the neural network model
of ℎANH, and one is on the optimal path and one is not, then it will cause problems. Also likely
is the cause being poor generalization of the model. The model has to learn patterns that signify
states on the optimal path or "good" states in general. If it does not learn these patterns then
performance can be poor. This is also not necessarily a problem of new unseen states performing
sub-optimally.

domain total expanded
ℎANH

total expanded
ℎLM−Cut

blocks 28692 23799
elevators_00 1323 939

ferry 8943 7378

Table 5.5: Results of heuristics on problems used in the training of the model

The results on states the ℎANH heuristic had as part of its training set are not too different
from those where the states were new 5.2. This is unusual and since we have shown that the
approach can work on singular problems, suggests that the ℎANH approach has trouble learning
appropriate weights for a set of problems even with perfect information.

This means that the ℎANH heuristic in its current state is slower than the ℎLM−Cut heuristic and
gives worse information. There, however, exist proposals with which further work could improve the
ℎANH heuristic. First adding more and better input heuristics. The ℎANH heuristic functions upon
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a framework which allows for easy addition of any number of admissible heuristics. In this work,
we were limited by what implementations existed of the admissible heuristics. Here ℎLM−Cut and
ℎ0 represent a sort of worst-case scenario (ℎmax notwithstanding), as we only have one heuristic
providing information. With more input heuristics, the model would be capable of being more
expressive as it could choose from more values of heuristics, and presumable have an increased
upper bound as well. Ideally, these new heuristics would be of a different family/approach than
ℎLM−Cut or ℎmax, then they could give good information in states where these heuristics do not.
One such candidate are pattern database heuristics [13], which compute a database of sub-problem
solutions to get a heuristic value, and critically, are incomparable to landmark heuristics [14] (such
as ℎLM−Cut), meaning we can not safely say that one dominates (always gives higher values than)
the other. This is a positive, as this means that they provide different enough values for their
combination to be interesting. This would increase the evaluation time of ℎANH even further,
however, and as such another proposal is to move away from the convex combination approach.
The new method would use the neural network model to determine a single input heuristics to
be evaluated. The model would essentially function as a heuristic that indicates which heuristic
function to evaluate. This would avoid the problem of computing multiple heuristics for a single
state and sometimes allow us to skip evaluating computationally expensive heuristics altogether
(when the ℎ0 heuristic is chosen).



Chapter 6

Conclusion

The state spaces of planning problems can be too large to be solved without heuristic search.
Designing these heuristics to aid the search is difficult. Recent approaches have had success with
using neural networks to find these heuristics, however, this leads to non-admissible heuristics. In
this work, we introduce the admissible heuristic ℎANH. The admissible heuristic ℎANH is a heuristic
function represented by a neural network model. It uses the output of the neural network model to
find a convex combination of several admissible input heuristics. It is guaranteed to be admissible
due to it being a convex combination of admissible heuristics and it can take advantage of the
strengths of the individual input heuristics. The ℎANH heuristic in its current iteration consists of
two heuristics, the zero heuristic ℎ0 and the landmark heuristic ℎLM−Cut. As it was necessary for
the creation of the ℎANH heuristic, the implementation of the ℎLM−Cut heuristic is also part of this
work, the heuristic is described, implemented and optimized. The ℎANH heuristic is designed to give
the states on the optimal path a low heuristic value and the states not on the optimal path a high
heuristic value to expand as few as possible states during search with the 𝐴* planner. However,
in its current iteration, the heuristic is slower and expands more states than when the 𝐴* planner
is used with the ℎLM−Cut heuristic. Further work is proposed on how to fix these problems. First
by adding more, stronger heuristics. The ℎANH allows for easy addition of input heuristics into
itself, and as such it can take advantage of heuristics of vastly differing approaches and strengths.
Second, by altering the heuristic to always select an admissible heuristic to evaluate for the given
state, reducing the computation time and expanding more states in less time.

25





Bibliography

1. PEVNY, Tomas. NeuroPlanner.jl [https://github.com/pevnak/NeuroPlanner.jl]. Gi-
tHub, 2023.

2. LIPOVETZKY, Nir. Structure and Inference in Classical Planning. Morrisville, NC: Lulu.com,
2014.

3. BONET, Blai; GEFFNER, Héctor. Planning as heuristic search. Artificial Intelligence. 2001,
roč. 129, č. 1, pp. 5–33. issn 0004-3702. Available from doi: https://doi.org/10.1016/
S0004-3702(01)00108-4.

4. HELMERT, Malte; DOMSHLAK, Carmel. Landmarks, Critical Paths and Abstractions:
What’s the Difference Anyway? Proceedings of the International Conference on Automated
Planning and Scheduling. 2009, roč. 19, č. 1, pp. 162–169. Available from doi: 10.1609/
icaps.v19i1.13370.

5. TOYER, Sam; THIÉBAUX, Sylvie; TREVIZAN, Felipe; XIE, Lexing. ASNets: Deep Learning
for Generalised Planning. Journal of Artificial Intelligence Research. 2020, roč. 68, pp. 1–68.
issn 1076-9757. Available from doi: 10.1613/jair.1.11633.

6. SHEN, William; TREVIZAN, Felipe; THIÉBAUX, Sylvie. Learning Domain-Independent
Planning Heuristics with Hypergraph Networks. 2019. Available from arXiv: 1911 . 13101
[cs.AI].

7. CHEN, Dillon Ze; THIEBAUX, Sylvie; TREVIZAN, Felipe. GOOSE: Learning Domain-
Independent Heuristics. In: NeurIPS 2023 Workshop on Generalization in Planning. 2023.
Available also from: https://openreview.net/forum?id=cTtMNEn2Kr.

8. HORCIK, Rostislav; ŠÍR, Gustav. Expressiveness of Graph Neural Networks in Planning
Domains. In: 34th International Conference on Automated Planning and Scheduling. 2024.
Available also from: https://openreview.net/forum?id=pKEkSAPSGJ.

9. MANDLIK, Simon; RACINSKY, Matej; LISY, Viliam; PEVNY, Tomas. Mill.jl and Json-
Grinder.jl: automated differentiable feature extraction for learning from raw JSON data. 2021.
Available from arXiv: 2105.09107 [stat.ML].

10. CHRESTIEN, Leah; PEVNÝ, Tomás; EDELKAMP, Stefan; KOMENDA, Antonín. Optimize
Planning Heuristics to Rank, not to Estimate Cost-to-Goal. 2023. Available from arXiv: 2310.
19463 [cs.AI].

11. ZHI-XUAN, Tan. SymbolicPlanners.jl. 2023. Ver. 0.1.10. Available also from: https : / /
github.com/JuliaPlanners/SymbolicPlanners.jl.

12. ZHI-XUAN, Tan. PDDL.jl: An Extensible Interpreter and Compiler Interface for Fast and
Flexible AI Planning. 2022. PhD thesis.

13. CULBERSON, Joseph C.; SCHAEFFER, Jonathan. Pattern Databases. Computational In-
telligence. 1998, roč. 14, č. 3, pp. 318–334. Available from doi: https://doi.org/10.1111/
0824-7935.00065.

14. HELMERT, Malte. LM-Cut : Optimal Planning with the Landmark-Cut Heuristic. In: 2009.
Available also from: https://api.semanticscholar.org/CorpusID:5788925.

27

https://github.com/pevnak/NeuroPlanner.jl
https://doi.org/https://doi.org/10.1016/S0004-3702(01)00108-4
https://doi.org/https://doi.org/10.1016/S0004-3702(01)00108-4
https://doi.org/10.1609/icaps.v19i1.13370
https://doi.org/10.1609/icaps.v19i1.13370
https://doi.org/10.1613/jair.1.11633
https://arxiv.org/abs/1911.13101
https://arxiv.org/abs/1911.13101
https://openreview.net/forum?id=cTtMNEn2Kr
https://openreview.net/forum?id=pKEkSAPSGJ
https://arxiv.org/abs/2105.09107
https://arxiv.org/abs/2310.19463
https://arxiv.org/abs/2310.19463
https://github.com/JuliaPlanners/SymbolicPlanners.jl
https://github.com/JuliaPlanners/SymbolicPlanners.jl
https://doi.org/https://doi.org/10.1111/0824-7935.00065
https://doi.org/https://doi.org/10.1111/0824-7935.00065
https://api.semanticscholar.org/CorpusID:5788925

	List of Figures
	Introduction
	Introduction
	Background in planning
	Background in planning
	Planning tasks
	Solving planning tasks
	Common admissible heuristics
	hmax
	hLM-Cut


	Implementing heuristics by neural networks
	Implementing heuristics by neural networks
	Approaches with neural networks
	The admissible neuro-heuristic
	Realizing the admissible neuro-heuristic
	NeuroPlanner
	L* loss function, optimizing to rank
	Optimizing for fewest expanded states
	The upper limit of performance


	Implementing LM-Cut
	Implementing LM-Cut
	SymbolicPlanners
	Implementation
	Optimization

	Experimental evaluation
	Experimental evaluation
	Preparation
	Choosing input heuristics
	Evaluation environment

	Verifying the concept
	Dead ends
	hmax
	Domain choice
	Minibatches
	Tiebreaking

	Performance
	Discussion

	Conclusion
	Conclusion
	Bibliography





